

LIBRARY OF THE
UNIVERSITY OF ILLINOIS

AT URBANA-CHAMPAIGN

5io.e>4

co|p.2

Digitized by the Internet Archive

in 2013

http://archive.org/details/designofdigitalc287fink

/JO
j&$ort No. 287 V

)

DESIGN OF DIGITAL COMPUTER CIRCUITS

USING A BASIC LOGIC CELL

May 2k, 1968

by

Harvey Allen Finkelstein

LIBRARY OEIHB

9 1972

UNIVERSITY OF ILLINOIS

AT URBANA-CHAMPAIGN;

DEPARTMENT OF COMPUTER flHMH* UNIVERSITY OF ILLINOIS • URBANA, ILLINOIS

Report No. 287

DESIGN OF DIGITAL COMPUTER CIRCUITS
USING A BASIC LOGIC CELL*

by

Harvey Allen Finkelstein

May 2k, 1968

Department of Computer Science
University of Illinois
Urbana, Illinois 6l801

^Submitted in partial fulfillment of the requirements for the Degree of
Master of Science in Electrical Engineering.

ACKNOWLEDGEMENT

The author wishes to express his gratitude and to thank

his advisor Professor Sylvian R. Ray, Myrna Selivonchick for typing

the manuscript, John Otten for preparing the diagrams, and the

Digital Computer Laboratory for the reproduction of this thesis,

all of whose assistance in the preparation of this paper has been

greatly appreciated.

111

IV

TABLE OF CONTENTS Page

ACKNOWLEDGEMENT iii

LI ST OF TABLES v

LI ST OF FIGURES vi

1. INTRODUCTION 1

2

.

CUTPOINT CELL 3

2.1 Cell Design 3

2.2 Coding 3

2 .

3

Logi c Implementation 3

2 .h Advantages and Disadvantages 3

3- SQUARE CELL 6

3-1 Cell Design 6

3.2 Coding 6

3 « 3 Logic Implementation 10

3

.

h Advantages and Di sadvantages 20

k. HEXAGONAL CELL 22

k.l Cell Design 22

k,2 Coding 22

U.3 Logic Implementation 25

k.h Advantages and Disadvantages 25

5 • EXAMPLES OF THE USE OF CELLULAR LOGI C 30

6 . SUMMARY AND CONCLUSIONS 52

REFERENCES 55

APPENDI X A 56

APPENDIX B 57

LIST OF TABLES

Page

1. Outpoint Cell Coding k

2. Square Cell Controls 8

3- Hexagonal Cell Controls 2k

LIST OF FIGURES

VI

Figure

1. Square Cell Block Diagram

2. Square Cell Input-Output Decision Logic

3. Square Cell Function or Complement Decision
Logic

k. Square Cell Basic Functions Generation

5. Square Cell Right Output Function Selection

6. Square Cell Left Output Function Selection

7 • Square Cell Bottom Output Special Functions
Generation and Selection

8. Square Cell Bottom Output Basic Functions
Selection

9. Square Cell Flip-Flop Logic

10. Address Logic

11. Address Logic Flip-Flop

12. Hexagonal Cell Block Diagram

13* Hexagonal Cell Function or Complement
Decision Logic

1^. Hexagonal Cell Function Generation and
Selection Part a

15* Hexagonal Cell Function Generation and
Selection Part b

16. Hexagonal Cell Flip-Flop Logic

17* Square Cell Register and Counter

Page

7

11

12

13

Ik

15

16

17

18

19

21

23

26

27

28

29

31

VI

1

Figure Page

18. Hexagonal Cell Register and Counter 32

19. Cutpoint Cell Four Stage Shift Register 33

20. Square Cell Three Variable Decoder 3^

21. Hexagonal Cell Three Variable Decoder 35

22. Cutpoint Cell Three Variable Decoder 36

23. Square Cell Nines Complement Circuit 37

2k. Hexagonal Cell Nines Complement Circuit 38

25. Cutpoint Cell Nines Complement Circuit 39

26. Square Cell Translator From Binary-Coded
Decimal to Two-Out-of-Five kO

27

.

Hexagonal Cell Translator From Binary-Coded
Decimal to Two-Out-of-Five kl

28. Cutpoint Cell Translator From Binary-Coded
Decimal to Two-Out-of-Five k2

29. Square Cell Example A ^3

30. Hexagonal Cell Example A kk

31. Cutpoint Cell Example A ^5

32. Square Cell Example B k6

33. Hexagonal Cell Example B kj

3b. Cutpoint Cell Example B k8

35- Square Cell Example C k9

36. Hexagonal Cell Example C 50

37- Cutpoint Cell Example C 51

1. INTRODUCTION

At present, many digital circuits are built using modules

containing two or three NAND gates, NOR gates, or a single flip-flop.

The result is that a great many of these modules are usually required

to obtain a desired logical function. If these various gates could

be combined into a single module or cell capable of performing a

large number of operations, dimensional requirements of circuits in-

corporating these cells would be reduced. Size limitation is extreme-

ly important, for example, in digital circuits required in rockets,

missiles, and satellites. Therefore, if this multipurpose cell could

be designed and constructed at a reasonable cost, a new method of log-

ic design could result.

To achieve the objective of a universal logic cell, a meth-

od termed cutpoint logic had been devised. A cutpoint cellular array

is a two-dimensional rectangular arrangement of square cells, each of

which has binary inputs on the top and left edges and outputs on the

bottom and right edges. Each cell is interconnected with neighboring

cells, and it is specialized by a set of binary constants that are

termed cutpoints.* Although this cellular arrangement represents a

step forward in obtaining a reduction in the size of digital circuits,

it will be shown in this paper to have several disadvantages. There-

fore, two new types of universal cells, the square cell and the hexag-

onal cell, have been designed to eliminate the failings of the cut-

point cell.

*Minnick, R.C., "Cutpoint Cellular Logic", IEEE Transactions on Elec-
tronic Computers, December I96U.

The square cell has one fixed input, one fixed output,

and two lines that could be programmed either way. The hexagonal

cell has three fixed inputs and three fixed outputs. While the cut-

point cell can output only functions of two variables, the other two

cells yield many of the functions of three variables.

In this thesis, it is suggested that the various cells be

programmed by placing an address register in each cell. Microwelding

or separate lines could be employed but it will take more extensive

examples to justify their use. The addressing will be most efficient

if done by a computer. At this time, however, an algorithm to pro-

gram the hexagonal or square cell has not been found and program-

ming must be done by hand.

The individual cells consist of integrated chips containing

NAND and NOR gates and inverters. The number of gates placed on a

chip has been limited to 200 which is about the range of our present

technology.

Finally, the proposed saving in space and cost requirements

are illustrated by various examples of cellular networks. A summa-

tion of the number of cells used in applying each of the three meth-

ods to specific examples shows that 50$, more cells are needed in the

cutpoint cases.

Thus, this thesis will attempt to open up a new area in the

design of digital computer circuits. By expanding on these methods,

cells of different shapes or designs using layers of cells could

prove to be even more practical. The final result of the work in

this area should be most interesting.

2. CUTPOINT CELL

2.1 Cell Design

The cutpoint cell is a square shaped cell employing two in-

puts and two outputs. The right output line is tied directly to the

left input line. The bottom output yields one of eight functions of

two variables or a flip-flop output function.

2.2 Coding

The cell coding and functions performed, determined by a

four bit code, are shown in Table 1. No method of addressing each

cell other than with k switches is given in Mr. Minnick's article. A

scheme, however, consisting of a h bit register plus the appropriate

addressing logic could be used. This is the same method suggested

for the hexagonal and square cells and can be found by referring to

Sections 3*1 and 3«3«

2.3 Logic Implementation

Two different designs for a cutpoint cell, a resistor-tran-

sistor realization and a diode-transistor realization, are given in

Mr. Minnick's paper. Hardware design for the cutpoint cell will not

be discussed since the cutpoint cell will be shown to be inferior, in

a sense to be discussed in the following pages, to the other cells.

2.1+ Advantages and Disadvantages

The obvious advantage of designs utilizing cutpoint cells,

as well as the hexagonal and square cells to be discussed in the re-

maining sections, is that many functions are formed in one module.

In the cutpoint cell, 8 functions of two variables and a flip-flop

function can be performed without using a large number of individual

TABLE 1: CUTPOINT CELL CODING*

1

i y

2 x + y

3 "xy

h x + y

5 xy

6 x © y

7

13 »=S, y=R

*Minnick, R.C., loc. cit., p. 688.

NAND and NOR gates and inverters. The advantage the cutpoint cell

has over the square and hexagon is that an algorithm exists to pro-

gram the required function. This is done by forming each component

of the function in an individual column and then gathering up the

parts in the last row.

The main disadvantage of the cutpoint cell stems from the

large number of cells needed in the programming scheme. Most arrays

designed to yield a specific function have as many columns as terms

in the function and have one more row than the number of input vari-

ables used. Thus, a function

f =
*1 x

3
x
h

+ *1 *2 x
5

+ x
l

x
5

+ *2 X
6

<
"
2 '1 ^

would be made up in a Ux7 array. Mr. Minnick states that "the synthe-

sis of an arbitrary n~variable combinational switching function is

shown to require a cutpoint array n+1 cells high and no more than

cells wide."* Simplifying the function usually does not work in

the cutpoint case since input variables are usually restricted to a

single individual row and cannot be added in a subsequent row. An-

other shortcoming of this cellular method is that it needs two cells

just to form all of the functions of two variables whereas all of the

functions of three variables are performed by two hexagonal or

square cells.

*Minnick, R.C., loc. cit.

3. SQUARE CELL

3.1 Cell Design

A block diagram of a square cell is illustrated in Figure 1.

The upper righthand corner shows the address elements, a register con-

trol and a 16 bit shift register that sets the cell to the function

desired. The number next to the individual blocks indicate which bits

control that block and the path that the inputs fo]_Low through the

cell are shown by the directed lines. Further explanation of this

block diagram follows in the next section on coding.

3.2 Coding

The coding of the square cell is shown in Table 2.

The first decision is whether the input T. is complemented

or not and setting q accordingly. Control bits q~ and q^ determine

whether the sides are inputs and/or outputs and if the sides are not

both outputs, the input (s) is either complemented or left alone.

Once these preliminaries are completed, the desired output functions

are formed. If L is an output, the desired result is obtained by set-

ting q^, q
ft

and ^ to the proper values. There are 7 possible output

functions on this line of which one combination q^: 1, q^i 1, and qc^:

is set aside to provide more combinations of three inputs on output

line B . There are two sets of output functions available on the B
o o

line. The B functions are similiar to the functions provided on the

R and L lines while the A functions are different functions of three
o o

variables. The functions

(L+L~) (T+T) (R+R) + (L+L) (f+T) (R+R) (3.1)

L(T©R) + L(T+T) (R+R) (3.2)
and

L(T@R) +L(T+T) (R+R) (3-3)

<
cc
o
<
Q

O
o

CO CO

o
UJ
cc

<
o

UJ
or
z>o

8

TABLE 2: SQUARE CELL CONTROLS

V 1 Ti

Ti

V i Ri

Ro

%'' 1 Li

Lo

%'' 1 ¥
1

Li

Li

V 1 ¥
1

Ri

Ri
FUNCTIONS GENERATE

% : ¥ V Y °

1

Lo: 1

(T+f)©(R+R)

1 (T+T)+(R+R)

1 1 (T+t)(R+R")

1

1 1 R+R

1 1 USE
q±k q

15 q^
1 1 1 T+T

\k' 1 V 1 ql6
: 1 FUNCTIONS GENERATED B

qn : q!2
:

1

qio
: Bo: 1

(T+T)«(L+L)©(R+R)

1 (t+t)+(l+l)+(r+r)

1 1 (t+t)(l+l)(r+r)

1

1 1 R+R

1 1 Li+Li

1 1 1 T+T

TABLE 2: cont'd

FUNCTIONS GENERATED B

V q
3

:

1

1

1

1

V
1

1

'

1

1

q-. Ro: 1

1 (T+f)»(L+L)

(t+t)+(l+l)

1 (T+T) (L+L)

1 (T+f)©(L+L)

L+L

1 T+T

q13
: 1 L+L: 1

1

T+T: 1

1

Bo: Ro: 1

1

OUTPUT IS THE SAME

AS PREVIOUS OUTPUT

V 1 q8
: 1 V

qio
: qn : q12

: FUNCTIONS GENERATED A

qlV V ql6
: _ (L+L)(T+f)(R+R)

BO
' +(L+L)(T+T)(R+R)

1 (R+R)(T+T)+(L+L)

1 [(L+L)+(T+f)] (R+R)

1 1 [(R+R)+(T+T)] (L+L)

1 L(T9R)+L(T+T)(R+R)

1 1 l(tW)+l(t+t)(r+r)

1 1 [(R+R)©(T+T)] (L+L)

1 1 1 1

10

are included since three cells would otherwise be needed to form

these functions. Each of the 256 functions of three variables can be

placed in one of 22 different categories of similar functions as

listed in Appendix B. Therefore, the remaining function was chosen

from the classes of functions of three variables with the most mem-

bers. If R is an output, the R functions are formed using control

bits q , q, and q . Finally, if the cell is to be used as a flip-

flop, q is set as a "1", and the left input is the flip-flop set,

the top input is the trigger and B and R are the outputs.

3.3 Logic Implementation

Square cells are designed with the NAND and NOR gates and

inverters of Appendix A built onto a single chip or cell. Figure 2

illustrates the decision logic used to set inputs and outputs while

Figure 3 shows the logic used to complement the input variables. The

three basic functions, the "AND", the "OR", and the "EXCIUSLVE-OR",

are formed in Figure k. Figure 5 contains the right output function

selection logic while Figure 6 is for the left output. The special

functions are shown in Figure 7 and. their selection logic is pictured

in Figure 8. Since there is also a flip-flop in each cell, Figure 9

was included.

Finally, there is a need to program the individual cell.

Since these cells must be identical, this addressing is accomplished

by means of a 16 bit shift register shown in Figure 10. Three of the

h lines attached to each cell are common to every other cell. The

fourth, Inhibit, is used to differentiate between cells. A computer

is assumed as the source of the 16 bit groups that control each cell's

specific function. As each cell's turn to be programmed occurs, the

computer would lift the level on the Inhibit line from Ov. to +kv.

//

o
o
o

o
CO

o
UJ

I-
z>
Q.
h-
z>
o

I

H
Z>
Q.

UJ
u
UJ
or
<
Z>
O

cvi

UJ
q:
z>
o

IZ

N — roCO" O"

Ch

<t>±L>

_>

4

la:
O
o

* oK _i

z
o
</)

o
UJQ

h-
Z
UJ

2
UJ
-J
a.

IK*
+

2
Oo
a:
o
z
o
i-
o
z
3
u.

-J
-1
UJ
a
UJ
tr
<3

•* O
l-J <n

+ t

"4 ro
_l

UJ
tr.

=>
e>

J3

/4

ro «
cr cr

«4>

•4

+

4>i

ro

c\J

I-J •-c

>&

ro

o
IE

O
r-
O
y
CO

Z
o
r-
o
z
3

3
Q.

r-

O

CD

ujo

cr
<
O
CO

IT)

LU
tr.

3
CD

Icr

/s

lor

+

•—

C

—

c

ICE

+

o
UJ
_l
UJ
CO

O

I-

a.
h-
z>
o

LxJ

UJo
UJ
a:
<
Z>O
CO

to

Ld
q:
=>

U.

16

yi>**

z
o

o

UJ
CO

O
z

<

O
to
z
o
I-

o
z
ID
U-

<
o
UJ
a
to

3
a

D
o

o

<
O
CO

17

o
_J
UJ
co

CO
z
o
H
O
z
U.

o
CO
<
GO

3
0.

I-
3
O

o
go

UJ
or
<
3
O
CO

00

UJ
or
3

/s

q7 Li+Li

t
B, R„ q

13

FIGURE 9. SQUARE CELL FLIP-FLOP LOGIC

19

o

o

CO

CO
LU
or
Q
Q
<

Ld
a:

CD

20

and the 16 bits would be shifted in by the continuously running trig-

ger. The Clear line sets the shift register of Figure 11 back to all

zeros.

Of course, it is not essential that the square cell, as

well as the hexagonal cell to be discussed in the next section, have

the internal programming depicted in the above paragraph. This was

only one of several possible methods. Another is that a register be

employed outside the cells in a separate unit. In fact, individual

lines to each cell could even replace the registers. Actually, the

number of cells used in the computer elements would probably dictate

the choice of the type of cell programming.

2>»k Advantages and Disadvantages

The advantage of the square cell over the cutpoint cell is

that many more functions can be formed in one cell. Only 8 of the l6

functions of two variables can be performed using a cutpoint cell

while with one square cell, 152 of the 256 functions of three vari-

ables can be constructed. Appendix B gives a listing of the func-

tions that can be made with one cell and those that take two cells.

Included in those that need only one cell are, of course, all of the

functions of two variables. Thus, the many more functions that this

cell provides results in fewer cells used in digital circuits.

The saving in the number of cells used is obtained by sim-

plifying the function involved. This, however, yields no simple

scheme to program the cells. For a programmer, though, the job of

setting up the cell pattern and programming them does not appear to

be too difficult. Also, further investigation could probably yield a

method in which a computer would be utilized to determine the individ-

ual cell settings.

21

FLIP-FLOP

CLEAR DATA

g

OUT

TRIGGER

^

g

FIGURE II. ADDRESS LOGIC FLIP-FLOP-

22

k. HEXAGONAL CELL

k.l Cell Design

The hexagonal cell's block diagram is shown in Figure 12.

The address elements are the same as for the square cell and can be

found by referring back to Figures 1, 10 and 11. There are three

fixed inputs and three fixed outputs associated with this type of

cell. One of the outputs is the same or the complement of one of the

inputs while both the D and E output circuits are identical.

k.2 Coding

The coding for the hexagonal cell is listed in Table 3»

The first decision is whether or not to complement the in-

puts and then setting bits q , q_ and q„ accordingly. In forming the

functions involved, anywhere from none to all of the inputs may be

needed, q. , q and q^ are used to inhibit the inputs used for the D

output while q ~, q.^ and qip are used for the E output. Cell func-

tions are selected using bits 7 to 9 for the D output and 13 to 15 for

the E output. The functions

(A+A) (B+B) (C+C) + (A+A) (B+B) (C+C) (k.l)

A(Wc) + A(B+B) (C+C) (k .2

)

and
A(B*C) +A(B+B) (C+C) (+.3)

which are the same as functions 3»lj 3«2 and 3«3, are included to

avoid the necessity of using three cells to obtain these functions.

The fourth function

((A+A) + (B+B)) (C+C) (+.+)

was picked since it is the representative function of one of the

Z3

<

<

O
o
_l

UJ
o

o
<
X
LxJ

X
CM

UJ
a:
=>

u.

2k

TABLE 3: HEXAGONAL CELL CONTROLS

V °

1

A

A

^2 :

1

B

B

q
3

:

1

c

c

D OUTPUTS E OUTPUTS

v ° A INPUT INHIBITED qio
:

q
5

:

% :

B

C

it

it

II

II

*LL
!

V o V "6
= V

1

qio
:

1

*11
: q

l2
: q

13
:

1

0^ q8
:

1
V 1 •

+

q13
: qli+

: o

1

q
15

: 1

1 1 9 1 1

1 (A+A) (B+B) (C+C) +(A+A) (B+B) (C+C) 1

1

1 1

1 [(A+A) +(B+B)] (C+C)

a(b©c)+a(b+b)(c+c)

1

1 1

1

1 1 1 a(b@c)+a(b+b)(c+c) 1 1 1

*L6
: 1 FLIP'-FLOP

V] A+A B+B C+C E D

1 1 d 1

1 d 1

1 d
I OUTPUTS SAME AS

q
9

: 1

d
i PREVIOUS OUTPUTS

1 1 1

1 1 1

1 1 1

/outputs same as
(previous outputs

25

classes with the maximum number of members {2k). The flip-flop is a

Set-Reset flip-flop and is controlled by cu and q-./-« When this type

of operation is desired, D and E are the outputs while A is the set,

C is the reset, and B is the trigger.

k.3 Logic Implementation

The implementation of- the hexagonal cell is similar to that

of the square cell. The function or complement decision logic is

shown in Figure 13 while the D functions are formed and generated in

Figures Ik and 15. The E functions are formed in exactly the same

way except that the control bits are different. A Set-Reset flip-

flop is included and illustrated in Figure 16. Finally, the address

logic used is the same as that for the square cell and can be found

by referring back to Figures 10 and 11.

k.k Advantages and Disadvantages

As for the square cell, the hexagonal cell can also produce

all 256 functions of three variables using two cells. Of these, only

92 can be formed with one cell and would therefore indicate that a

square cell would be the better cell. As the examples of Chapter 5

illustrate, however, the hexagonal cell usage results in the minimum

number of cells. This is due to the fact that there are always three

outputs and three inputs with the hexagonal cell. Thus, hexagonal

cells, not requiring an input/output decision, have a more logical

coding scheme and are easier to program.

The hexagon, as well as the square, have the disadvantage

that if a variable is used in both output functions, either the vari-

able or the complement is used but not both. This can be corrected

in many instances by complementing the input of the adjoining cell

rather than adding additional gates in each cell.

26

o

o

CO

o
LlJ

Q
h-
Z
UJ

LlI

_J
Q.

O
o
cr
o

g
O
z

LlIO

O
CD
<
X
UJ
X
ro

LlI

a:
=>
o

27

28

23

FLIP-FLOP

A + A q9 B + B C+C q
16

~?n?

16

FIGURE 16. HEXAGONAL CELL FLIP-FLOP LOGIC

30

5- EXAMPLES OF THE USE OF CELLULAR LOGIC

Since each of the three cells discussed in this thesis con-

tain a flip-flop, binary counters and shift registers can be made by

the proper combination of cells. Figures 17 and 18 show that the

square method and the hexagon method use the same number of cells for

a shift register while in Figure 19, the cutpoint method requires

four times the number of cells.'

Another common digital circuit is a three—variable decoder.

iigures 20, 21 and 22, which are examples of this type of circuit,

show that there are twice as many square cells and three times as

many cutpoint cells used than hexagonal cells.

Figure 23 shows a nines complement circuit and the individ-

ual cell coding for the square cell method. Figures 2k and 25 are

the hexagonal and cutpoint methods respectively.

A translator from binary-coded decimal to two-out-of-five

circuit is shown in the next three figures (26, 27 and 28). As

usual, the hexagonal array requires the least number of cells.

Further examples of using cellular logic to form functions

that are used in digital work are shown in Figures 29 through 37 • As

before, the cutpoint arrays use the most cells in every case while

the hexagonal method uses the least.

31

4 STAGE SHIFT REGISTER

1 0-7 BINARY

COUNTER

FIGURE 17. SQUARE CELL REGISTER AND COUNTER

4 STAGE SHIFT REGISTER

0-7 BINARY COUNTER

3Z

A —

»

FIGURE 18. HEXAGONAL CELL REGISTER AND COUNTER.

33

T fc

Yi

1 1 v
5

^
5

fc

5
^

5
h.P p p p

ir v 1 v
13

b
13

t
13

t
13

^P p p p

v v ^ r v
5

fc

5
b

5
h

5
b,T4-P P p p p

ir v 1 f 1 r

13
h

13
h

13
t

13
fc,P p p p

lx
2

X. x6 lx.©

FIGURE 19. OUTPOINT CELL FOUR STAGE SHIFT
REGISTER.

*Minnick,R.C., "Outpoint Cellular Logic," p.696

34

CM

x —
X
CMX

fc

X

ix"
CM—x
fO
X

X
CM

—ix
x°

—ix
ro
X

x~
CM—x

IX

|X~
CM->x
ro

IX

IX

_3"
ÎX

IX
CMX

w

lx"t *t
CM
X w

X
CM

IX

a:
UJ

X| *t
o
o
o
UJ
aCM

X W

Ix
CM

IX

UJ
_j

IX [*t
m
<

CM
x— <

>

X
CM
X

w

UJ

X| ix
n
!

UJ

CM
^X w

IX
CM
X

w -1

_l
UJ

|x t Ix°f
o

CM

x— fc

UJ

<

x~
CM

IX

w 3
O
C/>

x~T *t
CM

fc

o
CVJ

X w

CM
IX

w
UJ
a:3

ix~[D?t U-

CM
X w —w

X X

35

IX

IX

or
LlI

Q
o
o
LJQ
LJ

IX

00
<
or
<
>
LJ
LlI

q:
X

IX

LJ
O

IX

O
<
X
Ll

X

LJ
or
=>
O

36

X

lx
+

IX~
> sr k, CO fc, lO

|X~

p w

k J i

M
IX
+_
X

J L

ro fc, CO k. m

ix"

p p

i L •i L

CM

X
+
lx"

< L

ro w *- h in

X

p p

i l i L

N

i L

*t fe *-

X+
X

fc in

X

p p

l i i i

CM

i i

*- w CO

IX
+

ix
-

h ro

|X~

P p

i i i i

N

i i

ro fc CO

IX
+

x~
h, ro

|X~

p p

t i i i

CM

i i.

ro <d-

+

ix~
fc ro

x"~

p

i i i i

N

i i

<fr h <fr
X

k, rop p

i i i i

1\

IX

IX

IX

*
ac
LlI

<frQ (T>O CDO
LlI

cL

X Q
CM

IX ~ •»

10X Ld
o

_l o>

CD
<

o

or
< 3

IX
- >

"a>
IX LlI O
X LlI

tr "cI o
h-

_l
_J

3
o

X Ld
X
IO

O O
IX

r- a:
2 ~
^mm .^o o
0_ c
r- c

_ 3 ^IX O
X *
K>

IX CO

CO

LU
or

e>
X Ll

X

37

1/=X,

^3SX3®X2X5 ^'Vs'W ^=XP X
5

\C0DE

CELbv
1 2 3 4 5 6 7 8 9 10 II 12 13 14-16

1 1 1 1 d d 1 1 1 1 1

2 1 1 1 d d 1 1 1

3 1 1 d d 1 1 1 1

4 1 1 1 1 1 d d 1

5 1 1 d d 1 d d 1 1

6 1 1 1 d d 1 1 1 1 1 1

FIGURE 23. SQUARE CELL NINES COMPLEMENT CIRCUIT

38

IX

X
II

3
O

O

UJ

UJ
-J
a.

o
o
0)
UJ

-J
<
o
<
X
UJ
X

UJ
a:

O

1
X A —>-

1 1

39

X
2 —

M

X3
—

»

x, —

T
i/, = x,©x

5

T
i/
3
= x

3
©x

2
x
5

- LT=X
2

T
i^=x

2
x
3
(x4©x 5

)

FIGURE 25. OUTPOINT CELL NINES COMPLEMENT CIRCUIT*

*..
Minnick.R.C , Cutpoint Cellular Logic, p.695.

40

IX

lx~

IX
+
IX

X

$

X
II

IX

IX

IX

IX
+

ix"

|X
+
CM

Ix
+

IX

IX

IX

CM
X

X
II

IO
IX
+
CM

IX

X
II

*
X

JX
IO

IX

IX

X

IX

X

X

IX

X

IX

+
IX

UJ
>
U-

I

o
Io

o
UJ
Q
Q
UJ
o
O
O

I

>-

<

GQ

O
or

or
o
<
_i
CO

<
or
\-

UJ
o
UJ
or
<
z>
o
CO

CD
CO

UJ
or
=)
CD

4/

X

IX

e
X
m

X
+

X

IX

IX

IX"
+

IX
+

ix"
If

X

IX
+

IX

x"

UJ
>
u.

I

U-
o

o
I

o
5

<
2
o
ujQ
Q
UJ
Q
O
O

I

>-

cr
<

CD

2
o
tr
li-

ce
o
(-
<
_i
CO
z
<
cr

UJ
a

o
<
x
UJ
X

N-'
CVJ

UJ
tr

4Z

w, • x
3
[x

l

+(x^»)^)| w
2
-x

(

(x
2
+ x

s
) w,- x

2
w
4

Xjix, +5^RX, x
2
x
4

vyx
4
+x

J
(x

|

© x
2
9x

4)

y *

y

4

'L

r

\

7

1

7

\I

3
fe

*4 *'

V.

1 3

{ r

7

1 r

r

1 r

1

X
3

y
(

r 1 r

5

] r

4

1

i

r 1

1

r

x
2

y

'

k

r 1

i

r

p

}

>

h

1
-

r

i

p

1

(

r

ft.A
i

<

r ' r

fe

<
r

2

1
r

i

\ r

5

' r i r } r
i r

5

w

\

i

r

i

' r

I

1

1

r

4

r

4

—

1

r

4

r

w

J r

7

p

(r < r J r 1 r \ r

w, w, w, w4 w
5'2 "3

FIGURE 28. OUTPOINT CELL TRANSLATOR FROM BINARY-CODED DECIMAL
TO TWO-OUT-OF-FIVE *

* Minnick.R.C. ."Cutpoint Cellular Logic," p.696

43

IX
+

X

IX
+

If)

(£

if)

* o

fO o o O o o o

PJ o o o o TJ TJ

r o - - o T3 TJ

o o - o - "D TJ

<n o - - T3 O -

00 - - - TJ - -

f^-
- - o T3 O O

(0 - o o O o O

ID D TJ TJ TJ TJ TJ

* "O T3 TJ o TJ TJ

ro O

(\j - - - - - -

- o

UJ /
Q /

/ o
/ _i

- PJ to t to (0

<
UJ
_J
Q_

<
X
UJ

UJo
UJ

<
o
CO

oS
C\J

UJ
01
Z)
CD

LL

IX
+

44

X

IX

'?

10

IX
w
X
+

X

X

IX
IO
X
ix"

X
IO

IX

ix"

<£ O o o O o o

IO o - - tj TJ TJ

^ — o o TJ tj TJ

rO o o - t> TJ TJ

CJ o - — TJ TJ TJ

— — o — TJ TJ TJ

O o - - tj TJ TJ

<T)
— o TJ — O O

00 — - TJ O — —

h- o o TJ o o o

<£ o o TJ — o o

ID — — TJ — — —

^f - o tj - — —

ro tj o — o TJ TJ

C\J

o
Ul /o /
° /
<->/-l
/_!
/ W
/ °

- CM rO <d- IO to

UJ
_l
Q.

<
X

UJ
o

<
z
o
<
x
Ul
X

d
ro

Ld
cr

(S)

f = x, x
3
x4 +x, x

3
x4 +x, x

3
x 4 +x, x

2
+x

2
x
3

- x4 (x (

0x 3)+x, x 3 x4,+x l

x
2
+x

2
x
3

45

i 1 ; i

Y k h b ^ b.
X, P p

1

X,

r 1 1

x
i

r

Y fe ^ h k wx
2

* p p w p

1 f 1

X|

r 1

X, X

r

2

1

x 2

r

Y k ^ w w fcX
3

* w p P p

}

X|©

r

<3

1

x,x
3

1

X,)

r

<2

1

x
2
x

r

3

Y h w ^ *- wx 4 P P w P W

}

X4(X

r

,0X3)

1

x,x

p

3*4

1

X, X 2

1

x 2)

r

<3

"- -* ^ ^
* 10

IXNX
IX
N

ro
IX

CsJ

^ r

+
N
X

1 r

+
NX 1 r

X

1 r

X

it

X
IX

FIGURE 31 OUTPOINT CELL EXAMPLE A

46

f - Xi X^X^XiXpX^Xv^Xi XpXOCv^XiXpXjX^r Xi X^XvHX|+X^vXji7X^)

X
3
+ X

4

X
3
X4

x,©x
2

(x,©x2)(x3+x4)

x, x3x4

FIGURE 32. SQUARE CELL EXAMPLE B

47

\x
X
®
X
+

X
to
X
x"
II

CD

UJ
-I
Q.

<
X
UJ

UJo

o
<
X
UJ
X
ro
ro

UJ
<T

48

f = x, x
3
x
4
+ (x^x

2
) (

x

3
+ x

4)

1 1 1

Y h 3
fc

3 *- 7
fe.X, w w

i F <f

V h
1

. te

6
k

7
fcx

2
p p W

i F i

"1 N** " 9

F

V h
2

fc

1

k.
5

fcX
3

* p

i

x,x,

f

>

i

X,®

r

*2

i

*3

r

Y k
5

h
1

fc.

3
hX 4 P p P P

i

x,x

r

5*4

i

x
(

€ *
2

i

X
3

F

*4

'«" 4
(x,®x

2
wx

3
+x4) x 3+ x4 3

1 r 1
' i F

FIGURE. 34 OUTPOINT CELL EXAMPLE B

49

CM

X

x-

€)

IX
IO
X
+
,x~

Km
IX

IX*

'*L
IX
+

x~

*
CM

IX

in
X
II

6
X
IX~

x
+

IX

IX"

>
l>T

IX~

IX

-f

x"
x"

x~

X*

,x~

1I 1I JL

*X
h wP

CM

X X
CM

IX

X*
eg

IX
+

X

1 r
IO V x VX CM
CM
X X

P P

IO
X
CM

X
IO +
X

lx"
IOX

n
IX

xn

*X
CM

IX

n
X

1 ' N CM
IX i r

IX
_ XX

*- wP p

i k i k

m
IX M

IX
X

m
IX

IX*

+
IO

IX

*
IX

CM
IX

IX

in
IX

IX
Ik

IX
fcP p

i i i i i k

*
* IX

— IX
|x CM

IX

lx~

IX
CM

IX

IX

M
IX

IX h fep p

o
UJ
_J
0.

<
X
UJ

UJ
o
UJ
cr
<
3
O
CO

ID
ro

ui
or
3
O

T T f
x

50

IX
+

X
X

IX

x
-

+m
IX

•x*
eg

IX

lx~

>
r>

IX
CVI

ix_

IX
+«

UJ
_1
0_

<

UJ
o

o
<
X
UJ

to
ro

UJ
q:
=5

u.

T = Xj X^Xg + Xg X^ Xg+ X. X2 X» X- + X. X 2^4 ^5 "*" ^1 ^2 ^3^3

51

x, —

0000011 L _i I

x, —

>

x, —>>

x |+ x2 V X
2

x,+x
2

X 4
—

x,+x 2+x 3 x,+x 2 X| x2 x 3

x.—

*

X 2 X 4 x 2x 3

*2*4*9

FIGURE 37. OUTPOINT CELL EXAMPLE C

52

6. SUMMARY AMD CONCLUSION

Three types of cells, cutpoint , hexagonal, and square,

were discussed in this thesis. Each of these designs were proposed

to replace the large number of individual integrated chips that are

in use today.

The cutpoint cell is the most primitive cell. Only half

of the functions of two variables and a flip-flop function are obtain-

able from this cell. This results in cellular arrays for a n-vari-
p

able function as large as n+1 by 2 ' cells. At present, though,

this is the easiest module to program.

The square cell is the next step in refining this logical

design technique. One fixed input, one fixed output, and two vari-

able lines are employed in producing many of the functions of three

variables. As a result, $6% less square cells than cutpoint cells

are used in typical examples. Since no algorithm exists at present,

programming these cells must be done by hand. Research into these

programming requirements, however, may uncover a suitable computer al-

gorithm. Also, new minimization techniques may reduce the number of

cells needed to produce various functions and thus make programming

easier.

The final step in the production of a new logic element is

the hexagonal cell. Although this cell produces less functions than

the square cell, its three fixed inputs and three fixed outputs yield

arrays with 66f less cells than cutpoint arrays and lOf less cells

than square cell arrays. Once again, an algorithm for a computer is

needed to eliminate programming by hand.

53

A further improvement can be made in both the square and

hexagonal cells by increasing the logic in each cell. At present

around 200 gates are used in the design of the logic. Since this

large number of logic elements appears to be the maximum that can be

put on a chip at present, perhaps future innovation could increase

this number. With the increased number of gates, however, goes an in-

crease in the control bits, tending to complicate the program and pre-

venting any substantial saving. The 16 bits used in the hexagonal

and square cells were the minimum number of bits that would yield the

necessary basic functions.

Although an internal shift register is included in each

cell, it is by no means the only possible method. In fact, it might

not even be the best way as future research may prove. Other sugges-

tions for cell addressing would include external registers, micro-

welding, or even 16 individual lines per cell.

Finally, it is possible that shapes other than square or

hexagonal would be more useful. Another area for investigation would

be multilayer designs. In this case, the cells that comprise one lay-

er may even be different in shape from those of the adjoining ones.

Thus, in this paper it has been shown that a single chip

capable of performing various functions can be used as the basis for

digital circuits. These cells would eliminate the large number of in-

dividual NAND and NOR gates and inverters that are presently encoun-

tered in this type of circuitry. As a result, the digital equipment

could be smaller in size. Also, after an initial period, the cost per

module would approach that of the individual integrated chips and

would yield a substantial monetary saving. As a final comment on the

advisability of using modular design, Mr. John Holland states:

5^

"If the cost of production is largely set-up cost, it may be possible

to produce complicated modules for what it presently costs to produce

and assemble a few transistors. Should this happen, average use fac-

tor for individual elements is no longer a reasonable measure of over-

all machine efficiency."*

^Holland, John H., "Iterative Circuit Computers: Characterization
and Resume of Advantages and Disadvantages", in Spandorfer, L. M.,
Proc. of a Symposium on Microelectronics and Large Systems , p. 176.

55

REFERENCES

1. Minnick, R.C., "Cutpoint Cellular Logic", IEEE Transactions on
Electron Computers, EC-13, Vol. 6, pp. 685-698, December 1964.

2. The Staff of the Computation Laboratory, "Synthesis of Electronic
Computing and Control Circuits", Harvard University Press,
Cambridge, Mass., 1951, PP- 23-27.

3. Holland, John H., "Iterative Circuit Computers: Characterization
and Resume of Advantages and Disadvantages", in Spandorfer, L. M.,
Proc. of a Symposium on Microelectronics and Large Systems,
Spartan Books, Washington, D.C., 1965, PP« 175-177 •

k. Hohn, Franz E., "Applied Boolean Algebra", Second Edition, The
Macmillan Company, New York, 1966.

56

APPENDIX A
LOGIC ELEMENTS

INVERTER

A = +4V,
A= OV,

B =OV
B = + 4V

A B NAND GATE

A = OV, B=OV, C=+4V
A=OV, B=44V, C=+4V
A = +4V, B=OV» C=+4V
A= + 4V, B= +-4V. C=OV

A B

5

NOR GATE

A=OV, B=OV, C=+4V

A=OV, B=-h4V, C=+4V

A=+4V, B=OV, 0+4V
A=+4V, B*+4V, C=OV

57

APPENDIX B

Number of Cells Used to Form a Function of Three Variables

Class Hexagonal Cell Square Cell

1 1

1 .1 1

2 1 1

3 2 1

U 1 1

5 1 1

6 2 2

7 1 1

8 1 1

9 2 2

10 2 "2

11 2 1

12 .1 1

13 1 1

lU 2 1

15. 2 2

16 2 2

17 1 1

18 2 2

19 2 2

20 1 1

21 1 1

58

APPENDIX B Cont'd

Summary of the 256 Functions of Three Variables

Class Number of Functions

1

1 8

2 k

3 12

k 12

5 8

6 2k

7 2k

8 6

9 8

10 2k

11 2k

12 2

13 6

111 2k

15 2k

16 8

IT 12

18 12

19 k

20 8

21 1

Representative Function

xyz

xyz + xyz

x(y©z)

xy

x(y®z) + xyz

xy + zxy

x(y + z)

x

yz + x(y + z)

xy + xz

x$yz

x©(y»z)

x«y

x + yz

xy + (y*z)

yz + (xfyz)

x + y

x + (y®z)

(x$y) + (x$z)

x + y + z

1

59

APPENDIX B Cont'd

Functions of Three Variables

Class 0:

Class 1: xyz xyz

Class 2:

xyz

xyz

xyz

xyz

xyz

xyz

xyz

xyz + xyz

xyz + xyz

xyz + xyz

xyz + xyz

Class 3: x(y©z) z(x©y)

x(y©z) z(x®y)

x(y©z) z(xiy)

x(y©z)

y(x©z)

y(x©z)

y(x©z)

y(x©z)

z(x©y)

60

Class h: xy

xy

xy

xy

yz

yz

yz

yz

xz

xz

xz

xz

Class 5 x(y®z

x(y©z

x(y©z

x(y®z

x(ylz"

x(y®z

x(y?z"

x(y©z

+ xyz

+ xyz

+ xyz

+ xyz

+ xyz

+ xyz

+ xyz

+ xyz

61

Class 6: xy + zxy

xy + zxy

xy + zxy

xy + zxy

xy + zxy

xy + zxy

xy + zxy

xy + zxy

yz + xyz

yz + icyz

yz + xyz

yz + xyz

yz + xyz

yz + xyz

yz + xyz

yz + xyz

xz + yxz

xz + yxz

xz + yxz

xz + yxz

xz + yxz

xz + yxz

xz + yxz

xz + yxz

Class 7: x(y+z) x(y+z) y(x+z) z(x+y)

x(y+z) y(x+z) y(x+z) z(x+y)

x(y+z) y(x+z) z(x+y) z(x+y)

x(y+z) y(x+z) z(x+y)

x(y+z) y(x+z) z(x+y)

x(y+z) y(x+z) z(x+y)

x(y+z) y(x+z) z(x+y)

62

Class 8:

Class 9:

Class 10:

x

x

y

y

z

z

x(y+z) +yz

x(y+z)+yz

x(y+z)+yz

x(y+z)+yz

x(y+z) +yz

x(y+z) +yz

x(y+z)+yz

x(y+z)+yz

xy + xz

xy + xz

xy + xz

xy + xz

xy + xz

xy + xz

xy + xz

xy + xz

yz + yx

yz + yx

yz + yx

yz + yx

yz + yx

yz + yx

yz + yx

yz + yx

zx + zy

zx + zy

zx + zy

zx + zy

zx + zy

zx + zy

zx + zy

zx + zy

63

Class 11: x © yz

x © yz

x © yz

x © yz

x © yz

x © yz

x © yz

x © yz

y © xz

y © xz

y © xz

y © xz

y © xz

y © xz

y © xz

y © xz

z © xy

z © xy

z © xy

z © xy

z © xy

z © xy

z © xy

z © xy

Class 12: x©(y©z)

x©(y@z)

Class 13: x©y

x©y

y©z

y©z

x©z

x@z

6k

Class Ik:

Class 15:

x + yz

x + yz

x + yz

x + yz

x + yz

x + yz

x + yz

x + yz

y + xz

y + xz

y + xz

y + xz

xy + 1iy®z)

xy + ('ySz)

xy + (!y©z)

xy + (!y®z)

xy + (!y®z)

xy + 'y@z)

xy + (,y@z)

xy + (!y®z)

yz + (,x@z)

yz + (^xiz)

yz + (x@z)

yz + (,xlz)

yz + (, x@z)

yz + (,xiz)

yz + [
v
x$z)

yz + (
v
x®z)

xz + (>@y)

xz + !x@y)

y + xz

y + xz

y + xz

y + xz

z + xy

z + xy

z + xy

z + xy

z + xy

z + xy

z + xy

z + xy

xz + (x©y)

xz + (x@y)

xz + (x@y)

xz + (x©y)

xz + (x©y)

xz + (xl£y)

65

Class 16: yz f (x$yz)

yz f (x©yz)

yz f (x©yz)

yz f (x©yz)

yz •f (x@yz)

yz f (x©yz)

yz f (x@yz)

yz f (x©yz)

Class 17: X + y

X + y

X + y

X + y

y + z

y + z

y + z

y + z

X + z

X + z

X + z

X + z

Class 18: X + (y©z) y + (x©z)

X + (y£z) y + (x®z)

X + (y©z) z + (x©y)

X + (y5z) z + (x®y)

y + (x©z) z + (x©y)

y + (x5z) z + (x®y)

66

Class 19: (x$y)+(x©z)

(x@y) +(x©z)

(x©y)+(x®z)

(x®y) +(x@z)

Class 20: x+y+z

x+y+z

x+y+z

x+y+z

x+y+z

x+y+z

x+y+z

x+y+z

Class 21: 1

u v 28
tor*

£&

